If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2-53+15=0
We add all the numbers together, and all the variables
10y^2-38=0
a = 10; b = 0; c = -38;
Δ = b2-4ac
Δ = 02-4·10·(-38)
Δ = 1520
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1520}=\sqrt{16*95}=\sqrt{16}*\sqrt{95}=4\sqrt{95}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{95}}{2*10}=\frac{0-4\sqrt{95}}{20} =-\frac{4\sqrt{95}}{20} =-\frac{\sqrt{95}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{95}}{2*10}=\frac{0+4\sqrt{95}}{20} =\frac{4\sqrt{95}}{20} =\frac{\sqrt{95}}{5} $
| 7x2+7x+1.75=0 | | -4(1x-2)+1x=-8 | | 19-4x+5x=180 | | 3h+65-14=2h+90 | | -4(1x-2)+x=-8 | | 43x+38=167 | | y/2+4=1/2 | | 9x+18=8x-18 | | 7x-5=11x+2 | | 6f-9f=-23 | | -2k-3-8k=-32 | | 15y-6+8y+43=360 | | 26y-100=25y+1 | | X=-100+x | | 8+7x=-67 | | 1.555258533=x+(100-x) | | 12-7(x+3)=-19 | | 5*(x-3)+18=33 | | 8/3 c−2=32 c−12 | | 9n-6=12+3n | | 25x-35=15x+35 | | 15b+20=50 | | 13k-12=43 | | 11s+11=111 | | 2-4w=38 | | 9w+10=290 | | 12r+6=62 | | 18q-6=50 | | 3/(4x-5)=x | | 12m-6=40 | | 3/(4x-5)=1 | | _2x_4_7x=_6x+5 |